Кто такой и чем известен евклид: рассказ про древнего математика, его открытия и вклад в науку

дальнейшее чтение

  • ДеЛейси, Эстель Аллен (1963). Евклид и геометрия. Нью-Йорк: Франклин Уоттс.
  • Кнорр, Уилбур Ричард (1975). Эволюция евклидовых элементов: исследование теории несоизмеримых величин и ее значение для раннегреческой геометрии. Дордрехт, Голландия: Д. Рейдел. ISBN 978-90-277-0509-9.
  • Мюллер, Ян (1981). Философия математики и дедуктивная структура в элементах Евклида. Кембридж, Массачусетс: MIT Press. ISBN 978-0-262-13163-6.
  • Рид, Констанс (1963). Долгий путь от Евклида. Нью-Йорк: Кроуэлл.
  • Сабо, Арпад (1978). Начало греческой математики. ЯВЛЯЮСЬ. Унгар, пер. Дордрехт, Голландия: Д. Рейдел. ISBN 978-90-277-0819-9.

Научная деятельность и открытия

Вся жизнь ученого прошла в александрийских стенах, поэтому и его научная деятельность с открытиями состоялась здесь. Образование он получил от платоновских учеников, поэтому от них же и перенял взгляды, которые и помогли ему сформировать свой класс математики и стать преподавателем.

Предшественниками Евклида были знаменитые математики Фалес с Пифагором и Аристотелем, которые сделали фундаментальные открытия в области тригонометрической науки. Но это были разрозненные части и не представляли собой одну большую логически выстроенную цепочку.

Как и современники, математик и его ученики любили систематичные и логичные знания. Именно поэтому всю свою научную деятельность Евклид бросил на систематизацию ранее полученных знаний и их дополнение. В каждой из своих книг «Начал» он дает основные понятия, использованные учеными ранее, а затем вводит основные аксиомы и постулаты геометрии, которые упростили работу его потомкам.

Так, с первой по четвертую книгу даются понятия и постулаты из трудов Пифагора и его последователей, в пятой книге — учение о пропорциях, с шестой по девятую книгу — знание о числах, а в последних — публикации о площадях с плоскостями и пространствами (основы стереометрии), иррациональности, учении о правильных телах.

Интересно, что публикация автора дала возможность писать последующие научные работы в области математики и получать новые знания о ней.

Свои открытия ученый сделал в той же области. Он ввел понятие точки, прямой, плоскости и движения, разработал постулаты для создания определенных геометрических фигур в любой области, понятие о свете, зеркалах, преломлении световых лучей, ввел элементарную теорию музыки, создал труд касательно использования геометрии при изучении астрономии и ошибках, которые возникают при формировании геометрических доказательств.

Кроме того, математик сделал небольшие открытия в области механики и дал понятие удельному весу тел.

«Начала» Евклида

Ватиканский манускрипт, т.1, 38v — 39r. Euclid I prop. 47 (теорема Пифагора)

Основное сочинение Евклида называется Начала. Книги с таким же названием, в которых последовательно излагались все основные факты геометрии и теоретической арифметики, составлялись ранее Гиппократом Хиосским, Леонтом и Февдием. Однако Начала Евклида вытеснили все эти сочинения из обихода и в течение более чем двух тысячелетий оставались базовым учебником геометрии. Создавая свой учебник, Евклид включил в него многое из того, что было создано его предшественниками, обработав этот материал и сведя его воедино.

Начала состоят из тринадцати книг. Первая и некоторые другие книги предваряются списком определений. Первой книге предпослан также список постулатов и аксиом. Как правило, постулаты задают базовые построения (напр., «требуется, чтобы через любые две точки можно было провести прямую»), а аксиомы — общие правила вывода при оперировании с величинами (напр., «если две величины равны третьей, они равны между собой»).

Евклид открывает врата Сада Математики. Иллюстрация из трактата Никколо Тартальи «Новая наука»

В I книге изучаются свойства треугольников и параллелограммов; эту книгу венчает знаменитая теорема Пифагора для прямоугольных треугольников. Книга II, восходящая к пифагорейцам, посвящена так называемой «геометрической алгебре». В III и IV книгах излагается геометрия окружностей, а также вписанных и описанных многоугольников; при работе над этими книгами Евклид мог воспользоваться сочинениями Гиппократа Хиосского. В V книге вводится общая теория пропорций, построенная Евдоксом Книдским, а в VI книге она прилагается к теории подобных фигур. VII—IX книги посвящены теории чисел и восходят к пифагорейцам; автором VIII книги, возможно, был Архит Тарентский. В этих книгах рассматриваются теоремы о пропорциях и геометрических прогрессиях, вводится метод для нахождения наибольшего общего делителя двух чисел (известный ныне как алгоритм Евклида), строятся чётные совершенные числа, доказывается бесконечность множества простых чисел. В X книге, представляющей собой самую объёмную и сложную часть Начал, строится классификация иррациональностей; возможно, что её автором является Теэтет Афинский. XI книга содержит основы стереометрии. В XII книге с помощью метода исчерпывания доказываются теоремы об отношениях площадей кругов, а также объёмов пирамид и конусов; автором этой книги по общему признанию является Евдокс Книдский. Наконец, XIII книга посвящена построению пяти правильных многогранников; считается, что часть построений была разработана Теэтетом Афинским.

В дошедших до нас рукописях к этим тринадцати книгам прибавлены ещё две. XIV книга принадлежит александрийцу Гипсиклу (ок. 200 г. до н. э.), а XV книга создана во время жизни Исидора Милетского, строителя храма св. Софии в Константинополе (начало VI в. н. э.).

Начала предоставляют общую основу для последующих геометрических трактатов Архимеда, Аполлония и других античных авторов; доказанные в них предложения считаются общеизвестными. Комментарии к Началам в античности составляли Герон, Порфирий, Папп, Прокл, Симпликий. Сохранился комментарий Прокла к I книге, а также комментарий Паппа к X книге (в арабском переводе). От античных авторов комментаторская традиция переходит к арабам, а потом и в Средневековую Европу.

В создании и развитии науки Нового времени Начала также сыграли важную идейную роль. Они оставались образцом математического трактата, строго и систематически излагающего основные положения той или иной математической науки.

Примечания и ссылки

Заметки

  1. Другие типы конструкций появляются в Античности, но не фигурируют в Элементах Евклида , такие как строительство по «  neusis  » или по наклону, процесс строительства с использованием градуированного правила и состоящий в построении сегмента заданной длины, концы которого лежат на двух заданных кривые.
  2. Утверждение считалось правильным до тех пор, пока персидский ученый Альхазен (965-1040) в своей книге « Китаб аль-Маназир» (книга оптики) не утверждал обратное.

Рекомендации

  1. , стр.  25.
  2. Прокл Ликийский ( пер.  Пол Вер Эке), Комментарии к первым книгам Элементов Евклида , Брюгге, Desclée de Brouwer,1948 г., стр.  61.
  3. ↑ и .
  4. (in) Дэвид Фаулер , Математика Академии Платона: Новая реконструкция , Оксфорд, Clarendon Press (Oxford Science Publications)1987 г.( ISBN  0-19-853912-6 ) , стр.  208.
  5. , стр.  354.
  6. ↑ и , стр.  26.
  7. ↑ и , стр.  15.
  8. , стр.  15-16.
  9. Несколько примеров приведены и опровергнуты в , p.  355, , стр.  25-31, , стр.  15, .
  10. , стр.  15, примечание 8.
  11. Жан Итар, Арифметические книги Евклида , Парижа, Германа,1961 г., стр.  11.
  12. , стр.  20, рассматривает это как иностранную практику в рассматриваемое время.
  13. (ru) Билл Кассельман, на факультете математики Университета Британской Колумбии .
  14. Жорж Кайас, Двадцать три века евклидовой традиции (библиографический очерк) , Palaiseau, École polytechnique (LPNHE, внутренний отчет),1977 г., 211  с. , стр.  9, например, перечислены около ста шестидесяти изданий с 1650 по 1700 год и четыреста с 1850 по 1900 год.
  15. ↑ и , стр.  18-19; , стр.  373-419.
  16. , стр.  20-21.
  17. , стр.  46.
  18. (in) Уилбур Ричард Норр , Древняя традиция геометрических проблем , Бостон, Биркхаузер ,1986 г., 410  с. , стр.  109.
  19. , с.  15.
  20. , стр.  421-425.
  21. , с.  102.
  22. , стр.  58.
  23. , стр.  425-430.
  24. , стр.  63-65.
  25. , стр.  22-23.
  26. , стр.  438-439.
  27. , стр.  433.
  28. , стр.  435-437.
  29. , стр.  26.
  30. , стр.  348.
  31. , стр.  56.
  32. ↑ и , стр.  25.
  33. Он дает утверждение, близкое к тому, что отношение касательных двух острых углов меньше отношения углов; см. , p.  442.
  34. , стр.  441-444.
  35. ↑ и , стр.  27.
  36. , стр.  57.
  37. , стр.  27-28.
  38. Денис Генрион, Пятнадцать книг геометрических элементов Евклида: плюс книга того же Евклида, также переведенная на французский … , Париж, Исаак Дедин,1632.

Эпонимы

Следующие математические структуры названы в честь Евклида:

  • Евклидово расстояние , длина прямой связи между двумя точками на плоскости или в пространстве.
  • Евклидов алгоритм , метод вычисления наибольшего общего делителя двух натуральных чисел
  • Евклидова геометрия , начертательная геометрия плоскости или пространства
  • Евклидово твердое тело , упорядоченное твердое тело, в котором каждый неотрицательный элемент имеет квадратный корень
  • Евклидова норма , длина вектора на плоскости или в пространстве
  • Евклидово пространство , пространство интуиции, реальное аффинное пространство со стандартным скалярным произведением
  • Евклидово отношение , отношение, к которому применимо следующее: если два элемента связаны каждый с третьим, то они также связаны друг с другом.
  • Евклидово кольцо , кольцо, в котором возможно деление на остаток
  • Евклидовы инструменты , допустимые действия при построении с циркулем и линейкой

Кроме того, в честь Евклида названы следующие математические теоремы и доказательства:

  • Евклидово доказательство иррациональности корня из 2 , первое доказательство противоречия в истории математики
  • Теорема Евклида о высоте : в прямоугольном треугольнике квадрат над высотой равен по площади прямоугольнику из сечений гипотенузы.
  • Теорема Евклида о катетерах : в прямоугольном треугольнике квадраты катета равны произведению гипотенузы и соответствующего сечения гипотенузы.
  • Лемма Евклида : если простое число делит произведение двух чисел, то также хотя бы один из двух множителей
  • Теорема Евклида : простых чисел бесконечно много

Также назван в честь Евклида:

  • Евклид (лунный кратер) , кратер на передней части Луны
  • (4354) Евклид , астероид главного пояса

Евклид и античная философия[править | править код]

Йос ван Вассенхове (Юстус из Гента). Евклид, ок. . Урбино

Уже со времён пифагорейцев и Платона арифметика, музыка, геометрия и астрономия (т.наз. «математические» науки) рассматривались в качестве образца систематического мышления и предварительной ступени для изучения философии. Не случайно возникло предание, согласно которому над входом в платоновскую Академию была помещена надпись «Да не войдёт сюда не знающий геометрии».

Геометрические чертежи, на которых при проведении вспомогательных линий неявная истина становится очевидной, служат иллюстрацией для учения о припоминании, развитого Платоном в Меноне и других диалогах. Предложения геометрии потому и называются теоремами, что для постижения их истины требуется воспринимать чертёж не простым чувственным зрением, но «очами разума». Всякий же чертёж к теореме представляет собой идею: мы видим перед собой эту фигуру, а ведём рассуждения и делаем заключения сразу для всех фигур одного с ней вида.

Некоторый «платонизм» Евклида связан также с тем, что в Тимее Платона рассматривается учение о четырёх элементах, которым соответствуют четыре правильных многогранника (тетраэдр — огонь, октаэдр — воздух, икосаэдр — вода, куб — земля), пятый же многогранник, додекаэдр, «достался в удел фигуре вселенной». В связи с этим Начала могут рассматриваться как развёрнутое со всеми необходимыми посылками и связками учение о построении пяти правильных многогранников — так называемых «платоновых тел», завершающееся доказательством того факта, что других правильных тел, кроме этих пяти, не существует.

Для аристотелевского учения о доказательстве, развитого во Второй аналитике, Начала также предоставляют богатый материал. Геометрия в Началах строится как выводная система знаний, в которой все предложения последовательно выводятся одно за другим по цепочке, опирающейся на небольшой набор начальных утверждений, принятых без доказаельства. Согласно Аристотелю, такие начальные утверждения должны иметься, так как цепочка вывода должны где-то начинаться, чтобы не быть бесконечной. Далее, Евклид старается доказывать утверждения общего характера, что тоже соответствует любимому примеру Аристотеля: «если всякому равнобедренному треугольнику присуще иметь углы, в сумме равные двум прямым, то это присуще ему не потому что он равнобедренный, а потому что он треугольник» (An. Post. 85b12).

биография

Нет прямого источника о жизни Евклида: у нас нет ни письма, ни автобиографических указаний (даже в виде предисловия к произведению), ни официальных документов, ни даже намеков кого-либо из его современников. Как резюмирует историк математики Питер Шрайбер, «о жизни Евклида не известно ни одного достоверного факта».

Написание старейшего известно о жизни появляется Евклид в сводке по истории геометрии , написанного V — го  века нашей эры философа неоплатоник Прокл , комментатор первой книги элементов . Сам Прокл не дает никаких указаний. Он только говорит, что «объединив свои Элементы , скоординировал многие из них и вызвал в неопровержимых демонстрациях те, которые его предшественники демонстрировали в небрежной манере. Этот человек также жил при первом Птолемее, потому что Архимед упоминает Евклида. Таким образом, Евклид старше учеников Платона , но старше Архимеда и Эратосфена  »

Принимая во внимание временную шкалу, данную Проклом, Евклид, Платон и Архимед, жившие между современниками Птолемея I er , следовательно, жили около 300 г. до н

Ж.-К.

Ни один документ не противоречит этим нескольким предложениям или не подтверждает их. Прямое упоминание Евклида в произведениях Архимеда происходит из отрывка, который считается сомнительным. Архимед также обратиться к некоторым результатам Стихии и ostrakon , найденный на острове Элефантина и датированных III — го  века до н.э., обсуждает цифры изученные в тринадцатой книге элементов , а десятиугольника и икосаэдра , но не воспроизводят евклидовы произнесение точно; поэтому они могли происходить из источников до Евклида. Ориентировочная дата 300 г. до н.э. Однако считается, что AD совместим с анализом содержания евклидовой работы и принят историками математики.

Кроме того, намек математиком IV — го  века нашей эры, Папп Александрийский , свидетельствует о том , что ученики Евклида преподавал в Александрии . На этом основании некоторые авторы связывают Евклида с Мусионом Александрийским , но, опять же, он не упоминается ни в одном соответствующем официальном документе. Квалификатор, часто связанный с Евклидом в древности, — это просто stoichéiôtês (на древнегреческом  : στοιχειωτής ), то есть «автор Элементов».

Портрет Евклида работы Жюста де Гана, написанный около 1474 года; геодезист ошибочно отождествлен с Евклидом из Мегары из- за распространенной в то время путаницы между последним и автором .

Про Евклида ходят несколько анекдотов, но, поскольку они появляются и для других математиков, они не считаются реалистичными: это, таким образом, один из знаменитых анекдотов Прокла, согласно которому Евклид ответил бы Птолемею — который хотел более легкого пути, чем элементы  — что там не было ни царская дорога в геометрии; вариант того же анекдота на самом деле приписывают Менехму и Александру Великому . Точно так же, начиная с поздней античности , различные подробности были добавлены к рассказам о жизни Евклида без новых источников и часто противоречивым образом. Таким образом, некоторые авторы рождают Евклида в Тире , другие — в Геле , ему приписывают различные генеалогии , конкретных мастеров, разные даты рождения и смерти, независимо от того, соблюдают ли правила жанра или одобряют определенные интерпретации. Таким образом, в средние века и в начале Возрождения математика Евклида часто путали с современным философом Платона Евклидом Мегарским .

Столкнувшись с этими противоречиями и отсутствием надежных источников, историк математики Жан Итар даже предположил в 1961 году, что Евклид как личность, возможно, не существовал, и что это имя могло обозначать «собирательное название« математической школы », либо настоящий мастер в окружении учеников или даже чисто вымышленное имя. Но эта гипотеза, похоже, не принимается.

Один из самых старых дошедших до нас фрагментов Элементов Евклида, обнаруженный в Оксиринхе , датируется периодом между 75 и 125 годами до нашей эры. Мы не более чем на один процент текста Евклида в более ранних источниках в конце IX — го  века.

Книги (4)

Геометрия. Трехмерный мирРаздел: Математика

Евклид Александрийский — автор одного из самых популярных нехудожественных произведений в истории.

Его главное сочинение — «Начала» — было переиздано тысячи раз, на протяжении веков по нему постигали азы математики и геометрии целые поколения ученых. Этот труд состоит из 13 книг и содержит самые важные геометрические и арифметические теории Древней Греции.

Не меньшее значение, чем содержание, имеет и вид, в котором Евклид представил научное знание: из аксиом и определений он вывел 465 теорем, построив безупречную логическую структуру, оставшуюся нерушимой вплоть до начала XIX века, когда была создана неевклидова геометрия.

Далее »

Начала Евклида. Книги I-VIРаздел: Математика

Значение «Начал» Евклида трудно переоценить. В течение двух тысячелетий люди изучали геометрию по «Началам» Евклида. Все систематические школьные курсы геометрии, непосредственно или через промежуточные звенья, испытывают на себе влияние «Начал». Их перевод на русский язык является поэтому не только данью классическому произведению древности, но и событием, весьма важным для преподавания геометрии в школе.

Перевод «Начал» Евклида сделан с греческого текста издания Гейберга. Автор старался быть как можно ближе к греческому тексту, порой даже в ущерб гладкости изложения. Так же, как Петрушевский, Энриквес и Хизс, автор дает риторического Евклида, решительно отказываясь перекладывать что-либо из «Начал» на современную алгебраическую символику, как это делают другие переводчики, в том числе и Гейберг. Такая символика тесно связана с идеями, совершенно чуждыми Евклиду.

Настоящий перевод предназначается не только для учителя, который мог бы удовлетвориться вольным переводом вроде перевода Ващенко-Захарченко, но и для лиц, ведущих работу по истории математики, заинтересованных в получении неискажённого Евклида.

Далее »

Начала Евклида. Книги VII-XРаздел: Математика

Предлагаемый вниманию читателя второй том евклидовых «Начал» содержит VII, VIII, IX и X книги. Из них первые три посвящены изложению вопросов арифметического и теоретико-числового характера, а десятая книга посвящена исследованию и классификации несоизмеримых величин.

«Начала» Евклида представляют собою полное и систематическое изложение основ геометрии, составленное в начале III века до н. э. одним из величайших древнегреческих математиков. Эту работу Евклид выполнил с таким искусством и такой логической строгостью, что она не только вытеснила в своё время все сочинения подобного рода, написанные другими математиками, но и оставалась потом в течение более чем двух тысячелетий основным источником геометрических знаний для всех культурных народов.

Далее »

Начала Евклида. Книги XI-XVРаздел: Математика

Предлагаемая вниманию читателя книга представляет собою третий, заключительный том нового русского издания «Начал» Евклида — классического произведения античной математической мысли, составляющего ещё и в наши дни основу курса элементарной геометрии. Третий том нашего издания содержит не только XI, XII и XIII книги «Начал», бесспорно принадлежащие Евклиду и посвященные в основном стереометрии, но также XIV и XV книги, которые хотя и примыкают тесно к предшествующим, но, как было установлено уже в XVI столетии, написаны другими авторами).

Перевод выполнен с наиболее достоверного греческого текста (в издании И. Л. Гейберга) профессором Д.Д. Мордухай-Болтовским (кн. XI–XIII) и проф. И.Н. Веселовским (кн. XIV и XV) и сопровождается их подробными комментариями историко-математического характера).

Далее »

Добавить отзыв

[править] Научные труды

Евклид получил научное образование от учеников Платона и был приглашён в Александрию Птолемеем, сыном Лага; здесь, в Александрии он основал школу математики. Из его сочинений дошли только «Элементы геометрии», книга под заглавием «Данные», трактата по геометрической оптике и катоптрике и часть сочинения о делении площадей многоугольников.

Математики более позднего времени Папп Александрийский и Прокл упоминают на не дошедшие до нас книги Евклида: четыре книги о конических сечениях, две книги о местах на поверхности и на три книги «Поризмы».

Наиболее знаменита книга Евклида «Элементы». Он первый дал настолько стройное, систематическое и изящное изложение геометрии прямых линий и круга, что в Англии до 20 в. при начальном обучении геометрии придерживаются изложения Евклида. Изложение «Геометрии» Евклида состоит из 13 книг, к которым присоединяют 2 книги о 5 правильных многогранниках, хотя открытие их несправедливо приписывают Гипсиклу Александрийскому (жил 150 лет позднее Евклида). Собственно геометрия прямых линий, кругов и плоских фигур заключается в первых шести книгах, а в пяти последних книгах изучаются поверхности и тела, в 7-й, 8-й и 9-й книгах рассматриваются свойства чисел, в 10-й рассматриваются в подробности величины несоизмеримые. Под «данными» подразумеваются те величины, которые на основании теорем, доказанных в «Элементах», могут быть определены из условий задачи. Если, например, задана на плоскости определенная точка и круг определенного радиуса, центр которого имеет вполне определенное положение, то длины и направления касательных из точки к кругу суть прямые «данные». Что такое «поризмы» — точно неизвестно. Папп и Прокл, говоря о поризмах, выражаются столь неясно, что нельзя составить себе представления об этом предмете. Папп, между прочим, говорит о поризмах как о каком-то особом методе, применяемом с успехом при решении многих трудных задач. Возможно, поризмы представляют упрощенный способ вывода некоторых лемм либо представляют собой нечто подобное сокращенному методу аналитической геометрии или, может быть, нечто подобное тем методам, которые употребительны в высшей геометрии. В «Началах» Евклид описывает метрические свойства пространства, которое современная наука называет Евклидовым пространством. Евклидово пространство является ареной физических явлений классической физики, основы которой были заложены Галилеем и Ньютоном. Это пространство пустое, безграничное, изотропное, имеющее три измерения.

Прокл (410—485 гг. н. э.) рассказывает, что Птолемей I спросил Евклида, нет ли короткого пути для понимания геометрии, чем тот, который изложен в «Началах», на что Евклид ответил: «В геометрии нет царского пути».

Евклид придал математическую определенность атомистической идее пустого пространства, в котором движутся атомы.

Написал также работы по астрономии, оптике, теории музыки.

«Начала» Евклида

Главный труд Евклида – «Начала» (или «Элементы», в оригинале «Стойхейа»). «Начала» Евклида состоят из 13 книг. Позднее к ним были прибавлены еще две книги.

Первые шесть книг «Начал» посвящены геометрии на плоскости – планиметрии. В философско-теоретическом отношении, в плане философии математики особенно интересна первая книга, которая начинается с определений, постулатов и аксиом, учение о которых было заложено Аристотелем.

Евклид определяет точку как то, что не имеет частей. Линия – длина без ширины. Концы линии – точки. Прямая линия равно расположена по отношению к точкам на ней. Поверхность есть то, что имеет только длину и ширину. Концы поверхности – линии. Плоская поверхность есть та, которая равно расположена по отношению к прямым на ней. И так далее. Таковы определения Евклида.

Статуя Евклида в музее Оксфордского университета

Далее следуют постулаты, т. е. то, что допускается. Допустим, что от всякой точки до всякой точки можно провести прямую линию, что ограниченную прямую можно непрерывно продолжить по прямой, что из любой точки, принятой за центр, можно всяким раствором циркуля описать круг, что все прямые углы равны между собой и что если прямая, падающая на две прямые, образует внутренние и по одну сторону углы, меньшие двух прямых, то, будучи продолженными, эти две прямые рано или поздно встретятся с той стороны, где углы меньше двух прямых.

Аксиомы Евклида говорят о том, что величины, равные третьей величине, равны между собой, что если к равным прибавить равные, то и целые будут равными, и т. д.

Далее, в первой же книге «Начал» Евклида, рассматриваются треугольники, параллельные линии, параллелограммы. Вторая книга «Начал» содержит геометрическую алгебру: числа и отношения чисел выражаются в пространственных величинах и в их пространственных же отношениях. Третья книга «Начал» исследует геометрию круга и окружности, четвертая – многоугольники. Пятая книга дает теорию пропорций как для соизмеримых, так и для несоизмеримых величин. В книге VI Евклид прилагает эти теории к планиметрии. Книги VII – X содержат теорию чисел, причем X книга трактует иррациональные линии. XI, XII и XIII книги «Начал» посвящены стереометрии, при этом в XII книге применяется метод исчерпания.

В строгом смысле слова Евклида нельзя считать «отцом геометрии». Свои «Начала» были у Гиппократа Хиосского в V в. до н. э. В IV в. до н. э. «Начала» были у Леона, и у Феудия Магнесийского. Метод исчерпания применял Евдокс Книдский, возможный учитель Евклида по Академии. Проблемой иррациональности занимались пифагореец Гиппас Метапонтский, Феодор Киренский, Теэтет Афинский… Однако Евклид – не простой передатчик сделанного до него математиками. В «Началах» Евклида мы видим завершение математики как стройной науки, исходящей из определений, постулатов и аксиом и построенной дедуктивно. Математика Евклида – вершина древнегреческой дедуктивной науки. Она резко отличается от ближневосточной математики с ее практической приблизительной рецептурностью. Не случайно «Начала» Евклида по их логической стройности, ясности, изяществу и законченности сравнивают с .

Правда, существовала легенда, что сам Евклид – не единственный автор дошедших до нас «Начал», что он сам дал лишь догматическое изложение материала, без доказательств, что доказательства были добавлены вышеупомянутым Теоном Александрийским. Теон Александрийский действительно занимался проблематикой «Начал». Но не он один. Этим же занимались и Прокл, и Симплиций. «Начала» Евклида были частично переведены на латинский язык Цензорином и Боэцием. Но эти их переводы затерялись. На Западе вплоть до конца XII в. находились в обращении тезисы Евклида без доказательств.

Что касается Ближнего Востока, то там Евклид был известен в переводах с греческого на сирийский, а с сирийского – на арабский. Первым арабским философом, который заинтересовался Евклидом, был, по-видимому, аль-Кинди (IX в.). Его интерес ограничивался евклидовой «Оптикой». Однако затем последовала масса переводов и комментариев на «Начала». Эти арабские тексты были переведены в XIII в. на латинский язык. Первый латинский перевод с греческого оригинала был делан в Европе в 1493 г. и отпечатан в 1505 г. в Венеции. Но до 1572 г., когда Федерико Коммандино в своем латинском переводе исправил эту ошибку, Евклида-математика путали с Евклидом Мегариком.

Псевдо-Евклид

Евклиду приписываются два важных трактата об античной теории музыки: «Гармоническое введение» («Гармоника») и «Деление канона» (лат. Sectio canonis). Традиция приписывать «Деление канона» Евклиду идёт ещё от Порфирия. В старинных рукописях «Гармоники» авторство приписывается Евклиду, некоему Клеониду, а также александрийскому математику Паппу. Генрих Мейбомrude (1555—1625) снабдил «Гармоническое введение» обстоятельными примечаниями, и вместе с «Делением канона» приписал их к трудам Евклида.

При последующем подробном анализе этих трактатов было определено, что первый написан в аристоксеновской традиции (например, в нём все полутоны считаются равными), а второй по стилю — явно пифагорейский (например, отрицается возможность деления тона ровно пополам). Стиль изложения «Гармонического введения» отличается догматизмом и непрерывностью, стиль «Деления канона» несколько схож с «Началами» Евклида, поскольку содержит теоремы и доказательства.

После критической публикации «Гармоники» знаменитым немецким филологом Карлом Яном (1836—1899) этот трактат стали повсеместно приписывать Клеониду и датировать II в. н.э. В русском переводе (с комментариями) его впервые издал Г. А. Иванов (Москве, 1894). «Деление канона» ныне одна часть исследователей считает аутентичным сочинением Евклида, а другая — анонимным сочинением в традициях Евклида. Последние по времени русские переводы «Деления канона» опубликованы (в версии Порфирия) В.Г.Цыпиным и (в версии Боэция) С.Н.Лебедевым. Критическое издание оригинального текста «Деления канона» выполнил в 1991 г. А.Барбера.

  • Назад

  • Вперёд

Добавить комментарий

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector